
Predicate Logic

• Discrete Mathematics (Kenneth Rosen)
– 8th edition – 1.4-1.8



Propositional Logic is not enough.

• We have no way to argue about class of 
entities. For example,
– Given that all the students are below 25 years of 

age, and Jill is a student.
– We do not have any way to deduce that 

Jill is below 25 years of age.
– Similarly, if x>2, and 2>1, we have no rules to 

deduce that x>1. 
– In fact we do not have any way to encode the 

information, x > 2, in propositional logic, why?



Predicate Logic

• Predicate logic is an extension of propositional 
logic that permits concisely reasoning about 
whole classes of entities.
E.g., “x>y”,  “x=5”.

• Such statements are neither true or false 
unless the values of the variables are not 
specified. Hence, these aren’t propositions.



Proposition vs. Predicates

• More Examples.
– “Khushraj is Teaching”, 2>1

• Both of the above are propositions.
• These propositions have two parts: Subjects, and 

a “relation/property” about the subjects these 
subjects.

• For example, Khushraj is a subject, and is 
teaching is a property or a verb that gives you 
more information about the subject.

• 2,1 are subjects and > is a relation/property that 
gives you more info about 2 and 1.



What is a Predicate?

• A predicate is a property or relation:
– Example: P(x): x is prime
– L(x, y): x loves y
– Friends(x,y,z): x,y,z are friends.

• Predicates become propositions when variables 
are instantiated.
– P(5)
– L(Alice, Bob)
– Hence Predicates can  be seen as propositional 

functions. That is, they are a function from the value 
of the variables, to a proposition. 



What is a Predicate?
• Hence, a predicate is modeled as a function P(·) from 

objects to propositions.
– P(x) = “x is prime” (where x is any object).

• The result of applying a predicate P to an object x=a is 
the proposition P(a). 
– Hence, P(3) is the proposition “3 is a prime.”  
– Similarly, P(4) is the proposition “4 is a prime.”
– The truth of these propositions depend on what  the meaning of 

”prime” is for us. If we interpret prime with its  usual meaning, 
theh P(3) is true while P(4) is false.

• Note: The predicate P itself (e.g. P=“is prime”) is not a 
proposition (not a complete sentence). Number of 
arguments that a predicate P takes is its arity.



Proposition vs. Predicates

• Propositions treat statements as whole units, 
with no insight into internal structure.

• Predicates let you break down propositions into 
components — e.g., objects and relationships —
enabling you to quantify, generalize, and reason 
about classes of statements.

• This additional structure gives you finer control 
and expressiveness — hence more fine-grained.

• Hence, predicate logic is more fine-grained than 
propositional logic. 



Applications of Predicate Logic

• Same as propositional logics: automated proofs, 
solving puzzles, checking correctness of 
programs, solving complex circuits, querying 
databases.  But are more powerful and can 
express more type of information.

• In fact, It is the formal notation for writing 
perfectly clear, concise, and unambiguous 
mathematical definitions, axioms, and theorems 
for “almost any” branch of mathematics.



Universe/Domain of Discourse

• Notice that predicates can be seen as 
functions that outputs “true/false”.

• Hence, we need to specify what are the values 
that the variables can take.

• The collection of values that a variable x can 
take is called x’s universe of discourse.
e.g.,  let P(x)=“x+1>x”.  

we could define the course of universe as the 
set of integers. 



Quantifiers.

• Quantifiers help us express how many elements
in the universe of discourse satisfy a given 
condition or predicate.

• “∀” (the universal quantifier) means:
→ For every element x in the universe, the 
statement P(x) is true.
(Symbolically: ∀x P(x))

• “∃” (the existential quantifier) means:
→ There is at least one element x in the universe 
for which P(x)P(x)P(x) is true.
(Symbolically: ∃x P(x))



Quantifiers Example.

English Statement Predicate Logic

All humans are mortal ∀x (Human(x) → Mortal(x))

Some birds can't fly ∃x (Bird(x) ∧ ¬CanFly(x))

Every prime > 2 is odd ∀x (Prime(x) ∧ x > 2 → Odd(x))

There is a number divisible by 3 ∃x (Divisible_By_3(x))



Universal Quantifier, ∀

• To prove that a statement of the form 
x P(x) is true, we need to check that value of all 
possible values of x in domain of discourse such  
that P(x) is true.

• To prove that a statement of the form 
x P(x) is false, it suffices to find a 
counterexample (i.e., one value of x in the 
universe of discourse such that P(x) is false)

– e.g., P(x) is the predicate “x>0”



Existential Quantifier, ∃

• To prove that a statement of the form 
∃x P(x) is true, we just need to find one 
example a in the domain of discourse such  
that P(a) is true.

• To prove that a statement of the form 
∃x P(x) is false, we need to check that for 
every possible value a of x, P(x) is false.



Quantifiers as ∧,∨

• Definitions of quantifiers: If domain ={a,b,c,…} 
x P(x)  P(a)  P(b)  P(c)  … 
x P(x)  P(a)  P(b)  P(c)  …

• We can prove the following laws:
x P(x) x P(x)
x P(x) x P(x)

• Which propositional equivalence laws can be 
used to prove this?  



Equivalence Laws

• x:P(x) x: P(x) 
x:P(x) x: P(x) 

• x :(P(x)  Q(x))  (x : P(x))  (x : Q(x))
x :(P(x)  Q(x))  (x : P(x))  (x : Q(x))



Scope of Quantifier

• The part of a logical formula to which a 
quantifier is applied is called its scope.

e.g., (x:P(x))  (y:Q(y))

e.g., (x:P(x))  (x:Q(x))



Free and Bound Variable

• An expression like P(x) is said to have a free variable x 
(i.e. x is undefined).

• A quantifier (such as ∀ or ∃) applies to an expression 
containing free variables, and transforms those 
variables into bound variables, resulting in a statement 
where the variables are no longer free.

• Notice that formulae containing no free variables can 
be seen as “propositions”. These formulae are called 
closed formula.

• Any formula containing atleast one free variable is 
called an open formula.



Nested Quantifiers

Exist within the scope of other quantifiers
• Let the domain of x & y be people.
• Let P(x,y)=“x likes y” (a predicate with 2 f.v.’s)
• Then y:P(x,y) = “There is someone whom x

likes.” (a predicate with 1 free variable, x)
• Then x:(y:P(x,y)) = “Everyone has someone 

whom they like.”
(A __________  with ___ free variables.)



Examples

• P(x,y) has 2 free variables, x and y.
• x:P(x,y) has 1 free variable, and one bound 

variable.  [which is which?]
• “P(x), where x=3” is another way to bind x.
• An expression with zero free variables is an 

actual proposition.
• An expression with one or more free variables 

is still only a predicate: x:P(x,y)



Reusing variable names

• x:x:P(x) - x is not a free variable in 
x:P(x), therefore the x binding isn’t used.

• (x:P(x))  Q(x) - The variable x is outside of 
the scope of the x quantifier, and is 
therefore free.  Not a “proposition”.

• (x:P(x))  (x:Q(x)) - Legal because there are 
2 different x’s!

• Quantifiers bind as loosely as needed:
parenthesize x   P(x)  Q(x)



Order of Quantifiers

If P(x,y)=“x likes y,” express the following in 
unambiguous English:

x:(y:P(x,y))=
y:(x:P(x,y))=
x:(y:P(x,y))=
y:(x:P(x,y))=
x:(y:P(x,y))=



Order of Quantifiers

• A teacher supervises every student.
• What does this mean?
• ∃𝑥 ∀𝑦 𝑡𝑒𝑎𝑐ℎ𝑒𝑟 𝑥 ∧ 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑦 → 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑠 𝑥, 𝑦
OR
• ∀𝑥 ∃𝑦 𝑡𝑒𝑎𝑐ℎ𝑒𝑟 𝑥 ∧ 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑦 → 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑠 𝑥, 𝑦

• One of the reasons why Natural Language is 
ambiguous. It sometimes forgets to mention the order 
of the quantifiers.

• Only possible to switch quantifier without affecting the 
meaning when they are identical and adjacent.

• x y : P(x,y) y x : P(x,y)
x y : P(x,y) y x : P(x,y)



Some math examples

• Let domain = the natural numbers 0, 1, 2, … 
• “A number x is even, E(x), if and only if it is 

equal to 2 times some other number.”
x (E(x)  (y x=2y))

• “A number is prime, P(x), iff it isn’t the product 
of two non-unity numbers.”
x (P(x)  (y,z x=y×z  y1  z1))



Finite Domain what happens?



Definition of Limit
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Rules of Inference

• Kenneth Rosen, 8 edition, section 1.6 



What is an argument?

• An argument is a sequence of propositions 
intended to establish a conclusion.

• It consists of:
– Premises: Propositions assumed to be true.
– Conclusion: The proposition inferred from the 

premises.
• Written as:

– Premise₁
– Premise₂
– …
– ∴ Conclusion



Key Definitions

• Premise: A statement assumed to be true for the 
purpose of the argument.

• Conclusion: A statement that follows logically from the 
premises.

• Valid Argument: An argument where the conclusion 
logically follows from the premises. That is if the 
premises are true then the conclusion is true. In other 
words, 𝑝ଵ ∧ 𝑝ଶ … → 𝑐 is a tautology.

• Fallacy: An error in reasoning that makes an argument 
invalid.



Example of a Valid Argument

• Premise 1: If it rains, the ground gets wet. (p 
→ q)

• Premise 2: It rains. (p)
• ∴ Conclusion: The ground gets wet. (q)
• Valid by Modus Ponens



Common Rules of Inference

• Modus Ponens: p → q, p ⊢ q
• Modus Tollens: p → q, ¬q ⊢ ¬p
• HypotheƟcal Syllogism: p → q, q → r ⊢ p → r
• Disjunctive Syllogism: p ∨ q, ¬p ⊢ q
• Addition: p ⊢ p ∨ q
• Simplification: p ∧ q ⊢ p
• Conjunction: p, q ⊢ p ∧ q
• Resolution: p ∨ q, ¬p ∨ r ⊢ q ∨ r



Modus Ponens (Law of Detachment)

• If p → q and p are both true, then q must be 
true.

• Example:
• Premise 1: If I study, I pass.
• Premise 2: I study.
• ∴ I pass.



Modus Tollens

• If p → q and ¬q, then ¬p.
• Example:
• Premise 1: If it is a dog, it has four legs.
• Premise 2: It does not have four legs.
• ∴ It is not a dog.



Hypothetical Syllogism

• p → q, q → r ⊢ p → r
• Example:
• If I win, I’ll be happy.
• If I’m happy, I’ll celebrate.
• ∴ If I win, I’ll celebrate.



Disjunctive Syllogism

• p ∨ q, ¬p ⊢ q
• Example:
• I will eat pizza or pasta.
• I won’t eat pizza.
• ∴ I will eat pasta.



Fallacies

• Invalid Argument.
• Fallacies to Avoid:
• Affirming the Consequent: p → q, q ⊢ p 

(invalid)
• Denying the Antecedent: p → q, ¬p ⊢ ¬q 

(invalid)



Example Argument Evaluation

• Premises:
• If I go to the party, I will be tired.
• I am tired.
• ∴ I went to the party.
• Fallacy: Affirming the consequent



Summary (Propositional Logic)

• Arguments are made of premises and 
conclusions.

• Validity means truth-preserving structure.
• Rules of inference help derive conclusions.
• Be careful of fallacies — they look valid but 

aren’t!



What’s New in Predicate Logic?

• Propositional logic deals with whole statements.
• Predicate logic analyzes internal structure of 

statements.
• Introduces:
• - Quantifiers: ∀ (for all), ∃ (there exists)
• - Predicates: Functions mapping objects to truth 

values
• - Variables and domains



Common Inference Rules in Predicate 
Logic

• Universal Instantiation (UI): 
∀x P(x) ⊢ P(c)

• Universal Generalization (UG): 
[For any arbitrary c if P(c) ]⊢ ∀x P(x)

• Existential Instantiation (EI): 
∃x P(x) ⊢ [For some element c, P(c)]

• Existential Generalization (EG): 
[For some element c, P(c)] ⊢ ∃x P(x)



Universal Instantiation (UI)

• From a universally quantified statement, infer 
a specific instance.

• ∀x P(x) ⊢ P(a)
• Example:
• ∀x (Human(x) → Mortal(x))
• ⊢ Human(Socrates) → Mortal(Socrates)



Existential Instantiation (EI)

• From ∃x P(x), infer P(c) for some  constant c 
(assumed fresh).

• ∃x P(x) ⊢ P(c)
• Example:
• ∃x Student(x) ∧ Smart(x)
• ⊢ There is some student,c, Student() ∧

Smart(Alice)



Existential Generalization (EG)

• From a statement about a specific individual, 
infer existence.

• P(c) ⊢ ∃x P(x)
• Example:
• Smart(Alice)
• ⊢ ∃x Smart(x)



Universal Generalization (UG)

• From a statement about arbitrary individual, 
infer universal statement.

• P(c) ⊢ ∀x P(x) (only if c was arbitrary, not 
dependent on assumptions)

• Use with caution!
• Example (valid): Assume c is arbitrary and 

prove P(c), ⊢ ∀x P(x)



Using Predicate Inference Rules

• Predicate logic inference is often done by:
• - Applying UI or EI to eliminate quantifiers
• - Using propositional rules (e.g., Modus 

Ponens)
• - Generalizing back using EG or UG when 

allowed



Example Argument

• Premises:
• 1. ∀x (Dog(x) → Mammal(x))
• 2. ∃x Dog(x)
• Conclusion: ∃x Mammal(x)
• Steps:
• - From (1), by UI: Dog(a) → Mammal(a)
• - From (2), by EI: Dog(a)
• - Modus Ponens: ⊢ Mammal(a)
• - EG: ⊢ ∃x Mammal(x)



Common Mistakes

• Applying UG to a constant not known to be 
arbitrary.

• Assuming that ∃x P(x) means P holds for every 
x.

• Confusing UI and EI scope.



Summary (Predicate Logic)

• Predicate logic inference introduces 
quantifiers and variables.

• Four key rules: UI, UG, EI, EG.
• Combine with propositional rules for full 

inference power.
• Carefully manage scope and assumptions for 

validity.


